147 research outputs found

    NKG2D and its ligands: one for all, all for one

    Get PDF
    The activating receptor NKG2D is peculiar in its capability to bind to numerous and highly diversified MHC class I-like self-molecules. These ligands are poorly expressed on normal cells but can be induced on damaged, transformed or infected cells, with the final NKG2D ligand expression resulting from multiple levels of regulation. Although redundant molecular mechanisms can converge in the regulation of all NKG2D ligands, different stimuli can induce specific cellular responses, leading to the expression of one or few ligands. A large body of evidence demonstrates that NK cell activation can be triggered by different NKG2D ligands, often expressed on the same cell, suggesting a functional redundancy of these molecules. However, since a number of evasion mechanisms can reduce membrane expression of these molecules both on virus-infected and tumor cells, the co-expression of different ligands and/or the presence of allelic forms of the same ligand guarantee NKG2D activation in various stressful conditions and cell contexts. Noteworthy, NKG2D ligands can differ in their ability to down-modulate NKG2D membrane expression in human NK cells supporting the idea that NKG2D transduces different signals upon binding various ligands. Moreover, whether proteolytically shed and exosome-associated soluble NKG2D ligands share with their membrane-bound counterparts the same ability to induce NKG2D-mediated signaling is still a matter of debate. Here, we will review recent studies on the NKG2D/NKG2D ligand biology to summarize and discuss the redundancy and/or diversity in ligand expression, regulation, and receptor specificity

    Anti-CD20 Therapy Acts via FcγRIIIA to Diminish Responsiveness of Human Natural Killer Cells

    Get PDF
    Natural killer (NK) immune cells mediate antibody-dependent cellular cytotoxicity (ADCC) by aggregating FcγRIIIA/CD16, contributing significantly to the therapeutic effect of CD20 monoclonal antibodies (mAb). In this study, we show that CD16 ligation on primary human NK cells by the anti-CD20 mAb rituximab or ofatumumab stably impairs the spontaneous cytotoxic response attributable to cross-tolerance of several unrelated NK-activating receptors (including NKG2D, DNAM-1, NKp46, and 2B4). Similar effects were obtained from NK cells isolated from patients with chronic lymphocytic leukemia in an autologous setting. NK cells rendered hyporesponsive in this manner were deficient in the ability of these cross-tolerized receptors to phosphorylate effector signaling molecules critical for NK cytotoxicity, including SLP-76, PLCγ2, and Vav1. These effects were associated with long-lasting recruitment of the tyrosine phosphatase SHP-1 to the CD16 receptor complex. Notably, pharmacologic inhibition of SHP-1 with sodium stibogluconate counteracted CD20 mAb-induced NK hyporesponsiveness, unveiling an unrecognized role for CD16 as a bifunctional receptor capable of engendering long-lasting NK cell inhibitory signals. Our work defines a novel mechanism of immune exhaustion induced by CD20 mAb in human NK cells, with potentially negative implications in CD20 mAb-treated patients where NK cells are partly responsible for clinical efficacy. Cancer Res; 75(19); 1-12. ©2015 AACR

    Obinutuzumab-mediated high-affinity ligation of FcγRIIIA/CD16 primes NK cells for IFNγ production

    Get PDF
    Natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), based on the recognition of IgG-opsonized targets by the low-affinity receptor for IgG FcγRIIIA/CD16, represents one of the main mechanisms by which therapeutic antibodies (mAbs) mediate their antitumor effects. Besides ADCC, CD16 ligation also results in cytokine production, in particular, NK-derived IFNγ is endowed with a well-recognized role in the shaping of adaptive immune responses. Obinutuzumab is a glycoengineered anti-CD20 mAb with a modified crystallizable fragment (Fc) domain designed to increase the affinity for CD16 and consequently the killing of mAb-opsonized targets. However, the impact of CD16 ligation in optimized affinity conditions on NK functional program is not completely understood. Herein, we demonstrate that the interaction of NK cells with obinutuzumab-opsonized cells results in enhanced IFNγ production as compared with parental non-glycoengineered mAb or the reference molecule rituximab. We observed that affinity ligation conditions strictly correlate with the ability to induce CD16 down-modulation and lysosomal targeting of receptor-associated signaling elements. Indeed, a preferential degradation of FcεRIγ chain and Syk kinase was observed upon obinutuzumab stimulation independently from CD16-V158F polymorphism. Although the downregulation of FcεRIγ/Syk module leads to the impairment of cytotoxic function induced by NKp46 and NKp30 receptors, obinutuzumab-experienced cells exhibit an increased ability to produce IFNγ in response to different stimuli. These data highlight a relationship between CD16 aggregation conditions and the ability to promote a degradative pathway of CD16-coupled signaling elements associated to the shift of NK functional progra

    FcεRI signaling in the modulation of allergic response: role of mast cell-derived exosomes

    Get PDF
    Mast cells (MCs) are immune cells that act as environment resident sentinels playing a crucial role in Th2-mediated immune responses, including allergic reactions. Distinguishing features of MCs are the presence of numerous cytoplasmic granules that encapsulate a wide array of preformed bio-active molecules and the constitutive expression of the high affinity receptor of IgE (Fc epsilon RI). Upon Fc epsilon RI engagement by means of IgE and multivalent antigens, aggregated receptors trigger biochemical pathways that ultimately lead to the release of granule-stored and newly synthesized pro-inflammatory mediators. Additionally, MCs are also able to release exosomes either constitutively or upon stimulation. Exosomes are nanosized vesicles of endocytic origin endowed with important immunoregulatory properties, and represent an additional way of intercellular communication. Interestingly, exosomes generated upon Fc epsilon RI engagement contain co-stimulatory and adhesion molecules, lipid mediators, and MC-specific proteases, as well as receptor subunits together with IgE and antigens. These findings support the notion that Fc epsilon RI signaling plays an important role in influencing the composition and functions of exosomes derived by MCs depending on their activation status

    Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells

    Get PDF
    Cytotoxic lymphocytes share the presence of the activating receptor NK receptor group 2, member D (NKG2D) and the signaling-competent adaptor DNAX-activating protein 10 (DAP10), which together play an important role in antitumor immune surveillance. Ligand stimulation induces the internalization of NKG2D-DAP10 complexes and their delivery to lysosomes for degradation. In experiments with human NK cells and cell lines, we found that the ligand-induced endocytosis of NKG2D-DAP10 depended on the ubiquitylation of DAP10, which was also required for degradation of the internalized complexes. Moreover, through combined biochemical and microscopic analyses, we showed that ubiquitin-dependent receptor endocytosis was required for the activation of extracellular signal-regulated kinase (ERK) and NK cell functions, such as the secretion of cytotoxic granules and the inflammatory cytokine interferon-γ. These results suggest that NKG2D-DAP10 endocytosis represents a means to decrease cell surface receptor abundance, as well as to control signaling outcome in cytotoxic lymphocytes

    Imaging and Endoscopic Diagnosis of Lung Diseases in Small Animals. A Review

    Get PDF
    Diagnostic imaging plays a fundamental role in the diagnosis of pulmonary diseases. Radiography, ultra-sound, computed tomography, and endoscopy are important tools for achieving a diagnosis. The choice of diagnostic procedure varies according to the patient, the suspected diagnosis and the risk/benefit ratio. Cul-ture, cytology and histology are nearly always necessary to obtain a definitive diagnosis. Several biopsy sam-pling techniques are described. Surgical biopsies are the gold standard for the diagnosis of bronchiolitis or interstitial lung diseases but often not performed due to the high risk. In humans, the introduction of trans -bronchial cryobiopsies has led to excellent results in the study of interstitial lung diseases. (c) 2022 Elsevier Inc. All rights reserved

    The prognostic value of 18F-FDG PET-CT in the management of Hodgkin’s lymphoma: preliminary results of a prospective study

    Get PDF
    BACKGROUND: To date, Hodgkin’s lymphoma (HL) patients have achieved long-term survival of more than 80%. Unfortunately, longer follow-up has shown serious adverse effects of the treatments used. For this reason, therapeutic strategies are becoming more tailored to the individual patient´s prognosis. Pre-treatment risk factors for early-stage and advanced-stage HL are well known indicators of prognosis. Recently, early interim 18F-FDG PET has been shown as a strong and independent predictor of progression-free survival in HL. Our aim was to assess response to therapy by repeating 18F-FDG-PET/CT after four and six chemotherapy cycles. MATERIAL AND METHODS: We evaluated 21 consecutive patients affected by (HL) and presenting for assessment over a period of three years. All patients underwent initial staging with 18F-FDG-PET/CT along with standard staging procedures. We tailored an individual treatment plan dependent on pre-treatment risk factors and initial 18F-FDG-PET/CT. With the aim of the best definition of response to treatment, we repeated 18F-FDG-PET/CT after two (FDG-PET 2), four (FDG-PET 4) and six (FDG-PET 6) chemotherapy cycles. Chemotherapy was typically given for four cycles in early disease stages and was prolonged to six to eight cycles in advanced disease stages, depending on PET findings. RESULTS: Our results showed a strong negative predictive value in detecting responders in early stage HL and a positive predictive value in advanced-stage patients. Clinical stage, extra-nodal sites and the positivity of the 18F-FDG-PET/CT performed during chemotherapy were also noted as strong determinants of response to treatment. Moreover, in our series the 18F-FDG-PET/CT data obtained after only two chemotherapy cycles (FDG-PET 2) were the same of those obtained after FDGPET 4 and FDG-PET 6 controls. CONCLUSION: The preliminary data of the present study confirm those of previous published studies about the negative predictive value of 18F-FDG-PET/CT performed after four and six chemotherapy cycles, which contributed to the decision to stop treatment and to avoid radiotherapy in HL patients. Nonetheless, our preliminary data seems to suggest that only the 18F-FDG-PET/CT performed after two cycles of chemotherapy (FDG-PET 2) is able to provide the same prognostic information of the FDG-PET 4 and FDG-PET 6 earlier

    The IMiDs targets IKZF-1/3 and IRF4 as novel negative regulators of NK cell-activating ligands expression in multiple myeloma

    Get PDF
    Immunomodulatory drugs (IMiDs) have potent anti-tumor activities in multiple myeloma (MM) and are able to enhance the cytotoxic function of natural killer (NK) cells, important effectors of the immune response against MM. Here, we show that these drugs can enhance the expression of the NKG2D and DNAM-1 activating receptor ligands MICA and PVR/CD155 in human MM cell lines and primary malignant plasma cells. Depletion of cereblon (CRBN) by shRNA interference strongly impaired upregulation of these ligands and, more interestingly, IMiDs/CRBN-mediated downregulation of the transcription factors Ikaros (IKZF1), Aiolos (IKZF3) and IRF4 was critical for these regulatory mechanisms. Indeed, shRNA knockdown of IKZF1 or IKZF3 expression was both necessary and sufficient for the upregulation of MICA and PVR/CD155 expression, suggesting that these transcription factors can repress these genes; accordingly, the direct interaction and the negative role of IKZF1 and IKZF3 proteins on MICA and PVR/CD155 promoters were demonstrated. Finally, MICA expression was enhanced in IRF4-silenced cells, indicating a specific suppressive role of this transcription factor on MICA gene expression in MM cells. Taken together, these findings describe novel molecular pathways involved in the regulation of MICA and PVR/CD155 gene expression and identify the transcription factors IKZF-1/IKZF-3 and IRF4 as repressors of these genes in MM cells

    Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells. role of cMYC-IRF4-miR-125b interplay

    Get PDF
    Background: Anticancer immune responses may contribute to the control of tumors after conventional chemotherapy and different observations have indicated that chemotherapeutic agents can induce immune responses resulting in cancer cell death and immune-stimulatory side effects. Increasing experimental and clinical evidence highlight the importance of Natural Killer (NK) cells in immune responses toward Multiple Myeloma (MM) and combination therapies able to enhance the activity of NK cells against MM are showing promise in treating this hematologic cancer. The epigenetic readers of acetylated histones Bromodomain and Extra-Terminal (BET) proteins are critical regulators of gene expression. In cancer, they can upregulate transcription of key oncogenes such as cMYC, IRF4, BCL-2 and others. In addition, the activity of these proteins can regulate the expression of osteoclastogenic cytokines during cancer progression. Here, we investigated the effect of BET-bromodomain proteins inhibition, on the expression of Natural Killer (NK) cell-activating ligands in Multiple Myeloma (MM) cells. Methods: Five MM cell lines [SKO-007(J3), U266, RPMI-8226, ARP-1, JJN3] and CD138+ MM cells isolated from MM patients were used to investigate the activity of BET bromodomain inhibitors (BETi) (JQ1 and I-BET-151) and of the selective BRD4-degrader PROTAC (Proteolysis Targeting Chimera) (ARV-825), on the expression and function of several NK cell activating ligands (NKG2DLs and DNAM-1Ls), using Flow Cytometry, Real-Time PCR, transient transfections and degranulation assays. Results: Our results indicate that inhibition of BET proteins via small molecule inhibitors or their degradation via a hetero-bifunctional Proteolysis Targeting Chimera (PROTAC) probe can enhance the expression of MICA, a ligand of the NKG2D receptor, in human MM cell lines and primary malignant plasma cells, rendering myeloma cells more efficient to activate NK cell degranulation. Noteworthy, similar results were obtained using selective CBP/EP300 bromodomain inhibition. Mechanistically, we found that BETi-mediated inhibition of cMYC correlates with the upregulation of miR-125b-5p and the downregulation of the cMYC/miR-125b-5p target gene IRF4, a transcriptional repressor of MICA. Conclusions: These findings provide new insights on the immuno-mediated antitumor activities of BETi and further elucidate the molecular mechanisms that regulate NK cell-activating ligand expression in MM

    Nitric oxide donors increase PVR/CD155 DNAM-1 ligand expression in multiple myeloma cells: role of DNA damage response activation

    Get PDF
    Background: DNAX accessory molecule-1 (DNAM-1) is an activating receptor constitutively expressed by macrophages/ dendritic cells and by T lymphocytes and Natural Killer (NK) cells, having an important role in anticancer responses; in this regard, combination therapies able to enhance the expression of DNAM-1 ligands on tumor cells are of therapeutic interest. In this study, we investigated the effect of different nitric oxide (NO) donors on the expression of the DNAM-1 ligand Poliovirus Receptor/CD155 (PVR/CD155) in multiple myeloma (MM) cells. Methods: Six MM cell lines, SKO-007(J3), U266, OPM-2, RPMI-8226, ARK and LP1 were used to investigate the activity of different nitric oxide donors [DETA-NO and the NO-releasing prodrugs NCX4040 (NO-aspirin) and JS-K] on the expression of PVR/CD155, using Flow Cytometry and Real-Time PCR. Western-blot and specific inhibitors were employed to investigate the role of soluble guanylyl cyclase/cGMP and activation of the DNA damage response (DDR). Results: Our results indicate that increased levels of nitric oxide can upregulate PVR/CD155 cell surface and mRNA expression in MM cells; in addition, exposure to nitric oxide donors renders myeloma cells more efficient to activate NK cell degranulation and enhances their ability to trigger NK cell-mediated cytotoxicity. We found that activation of the soluble guanylyl cyclase and increased cGMP concentrations by nitric oxide is not involved in the up-regulation of ligand expression. On the contrary, treatment of MM cells with nitric oxide donors correlated with the activation of a DNA damage response pathway and inhibition of the ATM /ATR/Chk1/2 kinase activities by specific inhibitors significantly abrogates up-regulation. Conclusions: The present study provides evidence that regulation of the PVR/CD155 DNAM-1 ligand expression by nitric oxide may represent an additional immune-mediated mechanism and supports the anti-myeloma activity of nitric oxide donors
    corecore